AMS 27L LAB #9 Winter 2009

Solving ODE’s in Matlab

Objectives:
1. To solve ODE using ode45 and odel5s

2. To solve higher-order ODEs

1 Matlab’s ODE Suite

In the previous lab we were introduced to Matlab’s suite of ODE solvers including: ode23,
ode45, odelbs, ode23s, ode23t, ode23tb, odell3 and odel5i. The types of differential equa-
tion solvers include nonstiff and stiff problems, and fully implicit ODEs. If solutions to differential
equations have components which vary at different rates, by a couple of orders of magnitude, the
equations are called stiff. The Matlab suite of ODE solvers includes routines designed to solve stiff
equations, including ode15s, ode23s, ode23t and ode23tb. odelbs is the first of these to try.

’Rule of Thumb: Try to solve using ode45. If that fails, or is way slow, try ode15s. ‘

Problem #1. The system

dx (z —q)
dz
E = T —z (2)

models an oscillating chemical reaction called an oregonator — (the cool name was given by the
authors who, at that time, worked at the University of Oregon). Suppose that ¢ = 1072 and
g =9 x 107°. Put the system into normal form and write and ODE function M-file for the system
that passes f as a parameter. The idea is to vary the parameter f and note its affect on the
solution of the oregonator model. We will use the initial conditions xz(0) = 0.2 and z(0) = 0.2 and
the solution interval [0, 50].

(a) Use ode45 to solve the system with f = 1/4. This should provide no difficulties.
(b) Use ode45 to solve the system with f = 1. This should set off all kinds of warning messages.

(c) Try to improve the accuract with options = odeset(’RelTol’,le-6) and using options as
the options parameter in ode45. You should fine that this slows computation to a crawl as the
system is very stiff.

(d) The secret is to use the ode15s instead of ode45. Then you can note the oscillations in the
reaction.



A solution to the Oregonator Chemical Rxn system Phase Plane Plot

1 0.4
ul
0.8 u2 0.3
[aN]
S 0.6
g 0.2 p——
« 04
=}
L\ L _
0 0
0 20 40 60 0 0.2 0.4 0.6 0.8 1

t

Solution in 3—-d

Figure 1: Oscillating Oregonator system with f = 1.

(e) Play around with making 3-d plots of the solution to the Oregonator chemical reaction ODE
system by using the 3-d plotting command used in the previous lab. Evaluate the solution for
different values of f. The phase plot and solution are graphed in Figure [1| with f = 1.

2 Second Order Differential Equations

In the previous lab we solved single and systems of first order equations. To solve a single
second order differential equation it is necessary to replace it with the equivalent first order system.
For example,

y'=f(t, y, v) (3)

we set 1 = ¥, and z2 = 3. Then x= [z, 22]” is a solution to the first order system

/
Ty = T2,

I‘JQ = f(t7 1‘1,1'2).

Since x = [x7, a:g]T is a solution of the system, we then set y = 7. Then we have ¢/ = q:/l = I,
and y”’ = a4 = f(t,y,y). Thus, y is a solution of the equation in (3).



Example 1. Plot the solution of the initial value problem
y' +yy +y=0, y(0)=0,y(0)=1 (4)
on the interval [0, 10].

First, solve equation for 4", so that

!

y'=—yy —y
Introduce new variables for y and v/, then
1=y and xo=1
Then we have that

/ /
Ty = Y =22

/ /! /
Ty = Y =YYy —yY=—T1r2 — T

We can vectorize the ODE problem to use Matlab’s ODE solvers by

T2

F(t7 [xlva]T) = [

—X1T2 — I1
Let’s again use a function M-file to solve the second-order ODE using ode45.

Problem #2. I've written a function that solves the ODE in lab9ex1.m. Download the M-file
from our course webpage at http://wuw.soe.ucsc.edu/classes/ams0271/Winter09/ and give it
a go by typing lab9ex1 at the Matlab prompt.

The code in 1lab9ex1.m contains a subfunction, dfile, that implements the function F' de-
fined in equation . It’s important to remember that the initial ODE asked for the solution
of ¥/ +yy + vy = 0. Since y = x1, the first plot command in lab9ex1.m will plot y versus ¢, as
shown in Figure[2] The second plot command displays a phase-plane diagram as shown in Figure [2|

Problem #3. The system

miz" = —kiz+ko(y —x)
may” = —ka(y — )

model a coupled oscillator. Imagine a spring (with spring constant k1), attached to a hook in the
ceiling. Mass m; is attached to the spring, and a second spring (with spring constant kg), is at-
tached to the bottom of mass m;. If a second mass, mo, is attached to the second spring, you have
a coupled oscillator, where x and y represent the displacements of masses m; and meo from their
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Figure 2: Solution and phase plane plot of ¥" + yy' +y = 0.

respective equilibrium positions.

If you set x1 = z, 29 = 2/, 23 = y, and x4 = 3/, you can show that:

wl = I9
k
/ 1 2
Ty = ——x1+ — (73— 171)
mi mi
1‘:/3 = T4
k
/ 2
Ty = ——(r3—11)
ma

(a) Draw a diagram of the coupled oscillator and label the diagram denoting the variables mq, mg, x
and y.

(b) Assume k; = ko = 2 and m; = mg = 1. Create an ODE file to solve the system of equations.
Suppose that the first mass is displaced upward two units, the second downward two units, and
both masses are released from rest. Plot the position of each mass versus time.

Quit MATLAB by clicking on the File menu in the upper left corner and choosing Exit. Please
remember to Log Off (from the “Start” menu in the lower left of the screen).
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