
AMS 27L LAB #8 Winter 2009

Solving ODE’s in Matlab

Objectives:

1. To use Matlab’s ODE Solvers

2. To practice using functions and in-line functions

1 Matlab’s ODE Suite

Matlab offers a suite of ODE solvers including: ode23, ode45, ode15s, ode23s, ode23t,
ode23tb, ode113 and ode15i. The types of differential equation solvers include nonstiff and stiff
problems, and fully implicit ODEs. The AMS upper division course, AMS 147: Computa-
tional Methods and Applications, teaches numerical methods for solving ODE’s such as the
Runge-Kutta, trapezoidal rule, iterative methods and more, for solving problems in sciences and
engineering. In this course, we will simply learn how to use the Matlab ODE solvers, rather than
learning the various methodological logistics. In this lab, we will focus on the general purpose
solver, ode45 uses an explicit Runge-Kutta method to solve ODEs, and is usually the best function
to use as a “first try” for most problems.

2 Single First Order Differential Equations

We are looking at an initial value problem of the form x′ = f(t, x), with x(t0) = x0.

The calling syntax for using ode45 to find an approximate solution is:

ode45(odefcn, tspan, x0), where
odefcn calls for a functional evaluation of f(t, x),
tspan=[t0,tfinal] is a vector containing the initial and final times, and
x0 is the x-value of the initial condition.

Example 1. Use ode45 to plot the solution of the initial value problem

x′ =
cos t

2x − 2
, x(0) = 3,

on the interval [0, 2π].

Note that the equation is in normal form x′ = f(t, x), where f(t, x) = cos t/(2x − 2). The
problem indicates that tspan = [0,2*pi] and x0 = 3. We need to encode the odefcn.

1

Open your editor and create an ODE function M-file with

function xprime = ex1(t,x)
xprime = cos(t)/(2*x - 2);
end

and save the file as ex1.m.

Problem #1. What is the value of the function, f(t, x), when t = 0 and x = 2?

Plotting ODE Solutions. A quick way to plot the solution is to enter

>> ode45(@ex1, [0,2*pi],3)

An alternative way to code the function is to create an inline function, such as

>> f = inline(’cos(t)/(2*x - 2)’,’t’,’x’)

Problem #2. Use an inline function to plot the solution using ode45.

In the previous lab, we learned how to write function and subfunction M-files. Solving and
plotting solutions to ODEs by writing a subfunction is really handy because it is easy to reproduce
the result of a subfunction, once it’s written.

3 Systems of First Order Equations

Systems are no harder to handle using ode45 than are single equations. We simply write the
system in vector form. For example, let’s use ode45 to solve the initial value problem

x′
1 = x2 − x2

1

x′
2 = −x1 − 2x1x2

on the interval [0, 10] with initial conditions x1(0) = 0 and x2(0) = 1. We can write the system as
the vector equation [

x1

x2

]′

=

[
x2 − x2

1

−x1 − 2x1x2

]

Open your editor and create the following ODE file

2

function xprime = F(t,x)
xprime = zeros(2,1); % The output must be a column vector
xprime(1) = x(2) - x(1)^2;
xprime(2) = -x(1) - 2*x(1)*x(2);

and save the file as F.m. The line xprime = zeros(2,1) initializes xprime, creating a column
vector with two rows and 1 column.

Problem #3. What is the value of F (t, [x1, x2]) when [x1, x2] = [3, 4]? Does the value of
F (t, [x1, x2]) change for different values of t?

Before we call ode45 we need to enter the initial conditions for x1 and x2, which was x1(0) = 0
and x2(0) = 1. We do this by entering x0 = [0;1] so that x0 is a column vector.

Problem #4. Enter the ODE system by typing [t,x] = ode45(@F,[0,10],[0;1]); at the
Matlab prompt. Then, type whos to see the list of variables. What are the sizes of the variables t
and x? Why are they so large? Use the documentation for ode45 to investigate the outputs.

Problem #5. I’ve written a function that includes the following lines of code in plotF.m.
Download the M-file from our course webpage at http://www.soe.ucsc.edu/classes/ams027l/Winter09/
and give it a go by typing plotF at the Matlab prompt. The function plotF.m should produce an
image similar to Figure 1.

(a) Fill in the blank: The phase plane plot indicates that the solutions, x1

and x2, are (linear and cyclic), (non−linear and cyclic).

You can take a look at the values of t and x by typing: [t,x] at the Matlab prompt. These
are the Matlab commands that plot the solution to the ODE in different forms.

>> plot(t,x)
>> title(’x_1’’ = x_2 - x_1^2 and x_2’’ = -x_1 - 2x_1x_2’)
>> xlabel(’t’), ylabel(’x_1 and x_2’)
>> legend(’x_1’,’x_2’), grid

3

It is also possible to plot the components of the solution against each other with the commands

>> plot(x(:,1),x(:,2))
>> title(’x_1’’ = x_2 - x_1^2 and x_2’’ = -x_1 - 2x_1x_2’)
>> xlabel(’x_1’), ylabel(’x_2’), grid

The result is called a phase plane plot. Another way to present the solution to the system graphically
is in a three dimensional plot, where both components of the solution are plotted as separate
variables against the independent variable t by typing

>> plot3(t,x(:,1),x(:,2)) To see the solution from one perspective
>> plot3(x(:,1),x(:,2),t) ...or yet another perspective.

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

x
1
’ = x

2
 − x

1
2 and x

2
’ = −x

1
 − 2x

1
x

2

t

x 1 a
nd

 x
2

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Phase Plane Plot

0

5

10

−1

0

1
−0.5

0

0.5

1

1.5

t

Solution in 3−d

x1

x 2

−1
−0.5

0
0.5

1

−1

0

1

2
0

2

4

6

8

10

x1

Solution in 3−d

x2

t

x1

x2

Figure 1: Graphic Techniques of the solution to the first order ODE System.

4 Parameter Passing and Global Variables

Variables defined in Matlab functions are only “known” to the function itself (i.e. not outside
the function). In other words, the variable scope is local. We can pass parameters between func-
tions, so that they can access the variable value. We’ve already had some practice with writing
functions with more than one parameter. In the previous lab, we programmed a function and
subfunction, that modeled a simple RC-circuit. The main function passed several variables to the

4

subfunction to calculate the voltage response. We’ll write another set of functions that will pass
parameters between the function and subfunctions. Another way to make variables accessible to
subfunctions is to declare them as global. That will make the scope of the variables globally
accessible. We won’t discuss this method today.

The solvers in MATLAB can solve first order systems containing as many equations as you’d like.
Let’s take a look at a system of three equations that represents a simplified model for atmospheric
turbulence beneath a thunderhead, called the Lorenz system of equations.

x′ = −ax + ay,

y′ = rx − y − xz,

z′ = −bz + xy

where a, b and r are positive constants.

To make things more simple, let’s set ua = x, u2 = y, and u3 = z. With these substitutions,
system of equations becomes:

 u1

u2

u3


′

=

 −au1 + au2

ru1 − u2 − u1u3

−bu3 + u1u2


Problem #6. I’ve written a function M-file to find the solution of the Lorenz system of equations
with the constants a = 10, b = 8/3 and r = 28 and initial conditions

u(0) =

 u1(0)
u2(0)
u3(0)

 =

 1
2
3


Download the M-file plotLorenz.m from our class website. The function plotLorenz.m uses

the ode45 Matlab solver to solve the system of equations. The first two parameters for ode45 are
the time span and initial conditions. Open the function file in the Matlab editor. Notice the use of
[] as a parameter in the ode45 command. This is just a place holder in the command call for the use
of options. We’ll talk about the options available to the ode45 solver later. The plotLorenz.m
function will plot the solution and ought to produce an image similar to Figure 2.

5 Eliminating Transient Behavior

In many mechanical and electrical systems we experience transient behavior. This involves be-
havior that is present when the system starts, but dies out quickly in time, leaving only a fairly
regular steady-state behavior. In Figure 2 there appears to be transient behavior until about t = 1.
After t = 1 the solution settles down.

5

0 1 2 3 4 5 6 7
−20

−10

0

10

20

30

40

50
A solution to the Lorenz attractor system

t

u

Figure 2: Solution traces for X,Y and Z over the time span from 0 to 7.

Problem #7. To examine the situation more closely, let’s compute the solution over a longer pe-
riod, say 0 ≤ t ≤ 100, and then plot the part corresponding to t > 10 in three dimensions. Revise
the function plotLorenz.m to incorporate these changes. The Matlab function find returns the
indices that satisfy a logic conditional. For example:

N = find(t>10); Produces a list of the indices of those elements of t for which t¿10.

V = U(N,:); Produces a matrix containing the rows of U with indices in N.

Problem #8. We also would like to allow for randomly chosen initial values in order to see
if the steady-state behavior is somehow independent of the initial conditions. We can use the
Matlab command rand for this. The random number generator, rand produces random numbers
in the range [0, 1]. However, we want each component of our initial conditions to be randomly
chosen from the interval [−50, 50]. Easy! We can scale the output from rand using the command
u0 = 100*(rand(3,1) - 0.5). The M-file randLorenz.m from our class website does just this

for us. Download the function M-file randLorenz.m and give it a go.

6

The figure produced by randLorenz.m is a butterfly-like approximation of the Lorenz attractor,
as seen in Figure 3. With this particular choice of parameters, any solution, no matter what the
choice of initial conditions, is attracted to this rather complicated, butterfly-like, set.

−20 −15 −10 −5 0 5 10 15 20
−40

−20
0

20
40

0

10

20

30

40

50

x

The Lorenz attractor

y

z

Figure 3: 3-d plot of the solution to the Lorenz attractor.

Problem #9. Click on the rotate icon in the toolbar, and click and drag the mouse in the
axes in the butterfly figure to rotate the axes to a different view of the Lorenz attractor.

6 Stiff Equations

Solutions to differential equations often have components which are varying at different rates.
If these rates differ by a couple of orders of magnitude, the equations are called stiff. For example,
the equation x′ = et cos x is a stiff equation because the factor et gets very large. To see what
this does to ode45,

Problem #10. Execute the following lines and notice the speed of the plot

>> f = inline(’exp(t)*cos(x)’,’t’,’x’);
>> ode45(f,[0,50],0)

When you are tired of waiting for the solution to end, click on the Stop button. This very slow
computation is the typical response of ode45 to stiff systems of equations. The fast rate of change
in the function, f , requires ode45 to take extremely small steps, and therefore a takes a long time

7

to complete the solution.

The Matlab suite of ODE solvers includes routines designed to solve stiff equations, including
ode15s, ode23s, ode23t and ode23tb. ode15s is the first of these to try.

Problem #11. Execute the Matlab function ode15s(f,[0,50],0) and compare the speed of the
solution to the previous problem.

So how do we tell when a system is stiff?? It’s often obvious from the physical situation being
modeled that there are components of the solution which vary at rates that are significantly differ-
ent, and therefore the system is stiff. However, there is no general rule that allows us to recognize
stiff systems.

Rule of Thumb: Try to solve using ode45. If that fails, or is way slow, try ode15s.

Quit MATLAB by clicking on the File menu in the upper left corner and choosing Exit. Please
remember to Log Off (from the “Start” menu in the lower left of the screen).

8

	Matlab's ODE Suite
	Single First Order Differential Equations
	Systems of First Order Equations
	Parameter Passing and Global Variables
	Eliminating Transient Behavior
	Stiff Equations

