
AMS 27L LAB #6 Winter 2009

Symbolically Solving Differential Equations

Objectives:

1. To learn about the MATLAB Symbolic Solver

2. To expand knowledge of solutions to Diff-EQs

1 Symbolically Solving Differential Equations

The Symbolic Toolbox provides a link between MATLAB and the symbolic algebra program
know as Maple. Unlike the rest of MATLAB, which provides powerful numerical routines, the
Symbolic Toolbox deals with symbols, formulas, and equations. We will use the Symbolic Toolbox
to solve differential equations – which means that MATLAB will try to tell you the exact, analytic
solution to an equations, or even to an initial value problem. MATLAB can be successful, only if
such a solution exists!

Whenever you want to use symbolic mathematics, you must use the syms operator to alert
MATLAB that you are using a symbolic variable, rather than giving it a specific value. Enter

>> g=sym(’x^2’)
>> diff(g)

MATLAB recognizes that the input argument has class sym and promptly takes the derivative of
g = x2 with respect to x. Type help diff. Notice that the help page gives no hint of the fact
that the function diff takes the derivative of an object of class sym until the very last few lines.
That’s because the function diff can work with vectors of class double and sym. This technique
is known as overloading the function. To indicate that you want to see how diff works on these
objects, you have to type the command help sym/diff. Try it out!

Type the following commands, to learn what they do:

>> syms x a b c
>> f = z^2*x^2 + b*x + c
>> diff(f)

We can just as easily take a second derivative.

>> diff(f,2)
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You may be wondering – how the Symbolic Toolbox knew to differentiate with respect to x,
and not b or c for example. The answer is that the Symbolic Toolbox uses the variable closest to
’x’ alphabetically as it’s default variable.

2 Verifying Solutions to Differential Equations

Let’s ask MATLAB to find the solution to the logistic model for population growth given by
the differential equation

dP

dt
= k(M − P )P, k = 0.000025, M = 1000 (1)

where P (0) = 200. With k = 0.000025 andM = 1000, equation 1 becomes dP/dt = 0.000025(1000−
P )P . Using Matlab’s function dsolve we can find the solution to the diff-EQ,

>> P = dsolve(’DP= 0.000025*(1000-P)*P’,’P(0) = 200’,’t’)

we find that the solution of the initial value problem is

P =
1000

1 + 4e−t/40
(2)

The notation for P ′ is Dy and P ′′ is D2y, and so forth.

Now, let’s plot our diff-EQ

>> ezplot(P,[0,300])
>> grid
>> xlabel(’Time in minutes’)
>> ylabel(’Population’)
>> title(’A Logistic Model’)

Problem #1: Using the graph, approximate the length of time it takes the population to reach a
level of 800.

We could solve by hand for the exact value of t in P (t) = 800, but instead let’s have Matlab do
the pencilwork for us. The solve command is the Symbolic Toolbox’s versatile equation solver.

>> s=solve(’800=1000/(1 + 4*exp(-t/40))’,’t’)
>> double(s)

Notice that we changed the format of the output by using the double command.
Problem #2: Exactly, how many minutes does it take the population to reach 800?
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Recall that the logistic population growth equation we used to model the U.S. population growth
over the past 200 years is given by

dP

dt
= k(M − P )P, k = 8.9× 10−5, M = 311 (3)

where the population level, P (t), is expressed in billions and t is in years, with initial condition,
P (0) = P0 = 5.308. Let’s experiment with the model using dfield7.
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Figure 1: The plot of k(M − P )P versus P .

The roots of the inverted parabola are called
equilibrium points. The solutions P (t) = 0
and P (t) = M are called equilibrium solu-
tions. For example, if P (t) = M , the growth
rate, dP/dt of the population is zero and the
population remains at P (t) = M forever.

A phase line summarizes the slope changes
from positive to negative. If the population
is greater than M billion then the population
decreases to M billion. For this reason the
parameter M is called the carrying capacity.

Problem #3:

(a) Plot the differential equation using dfield7 by entering the differential equation, along with
the two parameters, k and M , from t = 0 to 350 and P = 0 to 320. Draw the solution to the
initial value problem using the initial population data, as given in the last lab.

(b) Add in a couple more solutions by clicking the mouse on the graph of the slope field. Notice
that each of these solutions tends to 311 as t increases. Remember that M = 311. This is not
a coincidence, and we will return to this point later.

(c) Plot the right hand side of the logistic differential equation (3) versus P for the range of
−1 ≤ P ≤ 320 (i.e. plot k(M − P ) ∗ P versus P ). The result is an inverted parabola, as seen
in figure 1.

(d) Use two data cursors to approximate the roots of the parabola.

(e) If P (t) = 0, the growth rate, dP/dt = and the population remains at
for all time.
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(f) The information on the phase line indicates that a population beginning

between 0 and billion has to increase to the equilibrium value of M billion.

(g) Let’s go back to the logistic equation slope field. Erase the graphed solution curves by selecting
Edit→Erase all solutions. Add the solution trajectories with the initial condition for the
U.S. population data, P (0) = 5.308 billion, and P (0) = M billion and P (0) = 0 billion. Note
that the equilibrium solutions are horizontal lines.

(h) Add a few solution trajectories for initial conditions a little above and below both equilibrium
solutions and fill in the blanks with the best answer.

(i) Solutions beginning a little above or below the equilibrium solution P = tend
to move back toward this equilibrium solution with the passage of time. That is why the

solution P = is called an assymptotically stable equilibrium solution.

(ii) Solutions beginning a little above or below the equilibrium solution P = tend
to move away from this equilibrium solution with the passage of time. That is why the

solution P = is called an unstable solution.

Problem #4: Use dsolve to find the solution to the indicated initial value problem. Use ezplot
to plot the solution over the indicated time interval.

yy′ + ty = 0, y(1) = 4, [−4, 4] (4)

Problem #5: Use dsolve to find the solution to the indicated second order differential equation.
Use ezplot to plot the solution on the indicated time interval. Hint: Use the command simple to
find the simplified form of the provided solution. Use the help document to get more information
about the simple command.

t2y′′ = (y′)2 y(1) = 3, y′(1) = 2, [0, 64π]
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Example: Find the general solution to the first order differential equation

dy

dt
+ y = t et.

We know how to do this!

>> clear all
>> syms y t
>> y = dsolve(’Dy + y= t*exp(t)’,’t’)
or simply,
>> y = dsolve(’Dy + y= t*exp(t)’)
gives
y =

-1/4*exp(t) + 1/2*t*exp(t) + exp(-t)*C1

Let’s substitute a number for the constant C1 and plot the function, y, on the time interval
[−1, 3]. Enter the following commands:

>> C1 = 2
>> y = subs(y)
>>ezplot(y,[-1,3])

The subs command substitutes the value of C1 into the symbolic expression y. The subs
command is actually a pretty versatile command. For example, if we want to find the value of
y(t = 1), we enter the commands:

>> syms t
>> subs(y,t,1)
ans =

1.4153

Problem #6: What’s the value of the function, y, from the previous problem when t = 2.5?

Extra Credit: Suppose we have a population of 100 individuals at time t = 0 and that the
population is correctly modeled by the logistic equation. Suppose that at time t = 2 there are 200
individuals in the population, and that the population approaches steady state at a population of
1000. Plot the population over the interval [0,20]. What is the population at time t = 10?

Quit MATLAB by clicking on the File menu in the upper left corner and choosing Exit. Please
remember to Log Off (from the “Start” menu in the lower left of the screen).
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