
AMS 27L LAB #4 Winter 2009

Linear Transformations and First-Order ODE’s

Objectives:

1. To practice graphing and interpreting phase plots

2. To learn usage of DFIELD display program

1 Solutions for Polynomial Equations

Problem #1 Find a solution to z4 + z2 + 1 = 0 by considering the equation first as a quadratic
for z2. Matlab has a routine for finding the roots of polynomials, called “roots” (type “help
roots”). It operates by feeding in a vector C formed from the coefficients of the polynomial - here
C = [1, 0, 1, 0, 1] (since there are no z3 or z terms). The syntax for the routine is “roots(C)”. The
roots can be checked by substituting them back into the given equation.

Problem #2 What are the solutions to z4 + 2z3 + z2 + 2z + 1 = 0?

2 Slope Fields and Solution Curves

A lot of insight can often be gained about the solutions to ordinary differential equations (ODEs)
using graphical methods. For example, consider the first-order equation,

dy

dx
= −xy, y(0) = y0 (1)

for a constant y0. We may solve this equation analytically, but first consider the solution in
general terms. With the “starting point”, y(0) = y0, specified, the solution y(x) defines a curve on
the (x, y)−plane. In many problems, the goal is to understand the shape of such “solution curves”.
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In fact, we can obtain a fair idea of what these curves look like from the ODE itself
since the slope of the solution curve, dy/dx, is given by the differential equation itself!

We proceed as follows: consider a host of representative points on the (x, y)-plane, and at each
point draw short line segments with the local slope of the solution curves (this the “direction field”
or “phase plot” for the ODE). Since the curves must be continuous and smooth, we can then try
to sketch out the shapes of the solution curves by threading them through the phase plot in such
a way that the curves are tangent to all the line segments they intersect. Finally, we roughly draw
the particular solution curve passing through the starting point, y(0) = y0.

NOTE: Open a new figure window for each problem by typing ‘figure’ at the Matlab command
line, or use the File pull-down menu to select File→New→Figure.

Problem #3: Let’s illustrate the previous explanation with Matlab step by step. First we need
a bunch of representative points (X, Y ) on the plane:

>> x = [−2.1 : .1 : 2.1]; y = x; [X, Y ] = meshgrid(x,y);

Now let’s create the line segments. At each point, the horizontal line segment is given by

>> u=ones(size(X));

According to equation 1, the slope at each point with respect to the horizontal line segment is given
by

>> v = −X.∗ Y;

We will draw the line seqments with the Matlab command “quiver” (type “help quiver” in your
shell to get a sense of the quiver command).

It is as simple as writing

>> quiver(X,Y,u,v);

We will also use a new command: axis. The command axis has to be entered with arguments
and should be used after a plot command has been executed. The particular commands used below
are “axis tight” and “axis square”. These commands resize the plot that you have plotted.

The command “axis tight” resizes the limits of the plot so that the plotted curves fit exactly
into the graph (by default, Matlab leaves a little space). The command “axis square” makes the
plot come out square (the default is a rectangle). Now, we add some cosmetics to our plot:

>> axis tight, axis square, xlabel x, ylabel y

Finally, let’s add a few curves showing the exact solution, y = y0e
−x2/2, for y0 = 1 and y0 = −2:

>> x=[-2.1:.01:2.1], hold on, plot(x,exp(-x.^2/2),x, -2 ∗ exp(-x.^2/2)), hold off

Now you should see a graph of the direction field for equation 1, as seen in figure (1)
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Direction Field for dy/dx=−x*y

Figure 1: Phase plot of equation 1.
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Figure 2: Phase plot of equation y′ = x− y.

If you want to implement the same sequence of commands for a different ODE, all you have to
do is insert the right differential equation in the definition of v. The important point is how the
little line segments guide the eye in allowing one to roughly sketch out the solution curves.

Alternatively, you can immediately plot a direction field using a free MATLAB programs
DFIELD and PPLANE that are available free for educational use. Our system administra-
tor has already downloaded DFIELD for us, however, for further reference, you can download the
free Matlab program at http://math.rice.edu/∼dfield/.

Figure 1.3.25 in the text was generated by the MATLAB program dfield. When a differental
equation is entered in the dfield setup menu, you can plot a direction field and then - with a single
mouse click - plot also the solution curve through any desired point. For example, figure (2) shows
the direction field and typical solution curves for the differential equation y′ = x − y. It appears
that there exists a (single) straight line solution curve that all other solution curves approach as
x → ∞. Indeed, if we substitute the trial straight line solution y(x) = ax + b in the differential
equation, we get

a = y′ = x− y = x− (ax + b) = (1− a)x− b

which is so, if and only if a = 1 and b = −1. Thus, y(x) = x− 1 is, indeed, a straight line solution
of the differential equation y′ = x− y. The figure then suggests (without proving it) that

y(x)− (x− 1)→ 0 as x→∞

The next example illustrates several features of dfield including how to be accurate with intial
conditions.

3

http://math.rice.edu/~dfield


Problem #4. The voltage y on the capacitor in a certain RC circuit is modeled by the differential
equation y′ + y = 3 + cos x, where we are using the variable x to represent time. Use dfield to
plot the voltage over the interval 0 ≤ x ≤ 20, assuming that y(0) = 1.

You will notice that we are asked to solve the initial value problem

y′ + y = 3 + cos x, y(0) = 1. (2)

The dependent variable in this example is y and the independent variable is x. The differential
equation y′ + y = 3 + cos x is not is normal form, so we put it in normal form by solving the
equation for y′, getting y′ = −y + 3+ cos x.

Type “dfield7 <Enter>” at the Matlab command prompt. The DFIELD Setup window ap-
pears. Select Edit→Clear all. Notice that there are options on the Edit menu to clear particular
regions of the DFIELD Setup window and each of these options possesses a keyboard accelerator.
Enter the left and right sides of the differential equation y′ = −y + 3+cos (x), the independent
variable “x”, and define the display window using 0 ≤ x ≤ 20 and 0 ≤ y ≤ 4.

The initial value problem in equation (2) contains no parameters, so leave the parameter fields
in the DFIELD Setup window blank. Click the Proceed button to transfer the information in the
DFIELD Setup window to the DFIELD Display window and start the computation of the direction
field.

You can choose the initial point for the solution curve with the mouse, however, it is difficult to
be accurate. Instead, in the DFIELD Display window, select Options→ Keyboard input. Enter
the initial condition, y(0) = 1, by assigning the initial value of x = 0 and y = 1. It isn’t necessary
to specify a computation interval. Click <Compute> to draw the corresponding solution curve.

From the graph of the solution we can see that the voltage y(18) is approximately 3. To get
more accuracy, use the Edit→Zoom in in the DFIELD Display window, then single-click the (left)
mouse button in the DFIELD Display window near the point (18, 3). Another way to zoom in is
to click the right mouse button at the zoom point.

Use the cursor position display to find a more accurate value for y(18).

Problem #5: Plot a direction field and typical solution curves for the differential equation
dy/dx = sin(x− y), but with a window corresponding to −10 ≤ x, y ≤ 10. A number of apparent
straight line solution curves should be visible.

(a) Substitute y = ax + b (by hand) in the differential equation to determine what the coefficients
a and b must be in order to get a solution.
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Problem #6: Plot the direction field for the ODE

dy

dx
=

(
1
x
− x

)
y

For y(−1) = y0, verify analytically that y = −y0 x exp{(1 − x2)/2}. Add the solution curves for
y(−1) = 1 and y(−1) = −2 to your picture. The limiting behavior is defined by what happens
when x→∞. What happens eventually to all the solutions?

Problem #7: Consider the following eight first order equations:

1.dy
dt = t− 1 2.dy

dt = t + 1 3.dy
dt = y + 1 4.dy

dt = 1− y

5.dy
dt = y2 + y 6.dy

dt = y(y2 − 1) 7.dy
dt = y − t 8.dy

dt = y + t

Four of the associated phase plots are shown in Figure 3. Pair the direction fields with their
associated equations – try it without graphing! Provide a brief justification for your choice.

(A)

(B)

(C)
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Figure 3: Direction Fields for Problem #6

(D)

Now go back and check your answers by graphing.

Quit MATLAB by clicking on the File menu in the upper left corner and choosing Exit. Please
remember to Log Off (from the “Start” menu in the lower left of the screen).
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